References

Conflict of interest statement
None declared.

Funding sources
None.

Epidemiology and risk factors of catheter-associated bloodstream infections among intensive care unit patients: an experience from a tertiary care hospital in Thailand

Madam,

Catheter-associated bloodstream infection (CABSIs) is a common problem in hospitals especially among patients admitted to intensive care units (ICUs). According to the National Nosocomial Infections Surveillance (NNIS) system of the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA), the median rate of CABSIs in ICUs ranges from 1.8 to 5.2 per 1000 catheter-days. However, most studies regarding CABSIs were conducted in developed countries where the epidemiology and risk factors associated with this condition may be different. This study was conducted to describe the epidemiology of CABSIs and to determine factors associated with CABSIs among medical ICU patients in a tertiary care hospital in Thailand.

A cohort study was conducted between 2004 and 2006 at Ramathibodi Hospital (a 1000 bed university hospital), Bangkok, Thailand. We performed a prospective surveillance as part of an infection control programme to collect information on all patients who had indwelling catheters during admission to the medical ICU. These patients were followed until one of the following events occurred: first episode of CABSIs, transferring to another ward, removal of the catheter, or death. The diagnosis of CABSIs was performed using CDC/NNIS definitions and criteria. Logistic regression analysis was used to determine the factors associated with CABSIs. The study was reviewed and approved by the institute review board.

A total of 235 patients were included in the analysis. Clinical characteristics of the patients are shown in Table I. Approximately three-quarters of patients had underlying condition(s). Median (interquartile range; IQR) Acute Physiology and Chronic Health Evaluation (APACHE) II score at ICU admission was 24 (12). Median (IQR) hospitalisation on the day before ICU admission was 1 (10) day. The most common catheter type was a short term catheter (ARROWgard Blue®) (65%) and the most common insertion site was the internal jugular vein (39%). The main purpose of catheter use was haemodialysis (31%). Median (IQR) duration of catheter placement was 6 (6) days. There was no statistically significant difference between the clinical characteristics and catheter-related information of patients with and without CABSIs, except that...
a higher proportion of patients with underlying condition and a longer median duration of catheter placement were found among patients with CABSI. Twenty patients had CABSI with cumulative incidence of 8.5% and incidence density of 10.7 (95% CI: 6.4–16.7) per 1000 catheter-days. The median time from catheter insertion to CABSI was 33 (95% CI: 16–∞) days. Aetiologic organisms were Enterococcus spp. (5, 23.8%), Acinetobacter baumannii (5, 23.8%), Candida albicans (3, 14.3%), and one each of meticillin-resistant Staphylococcus aureus, Staphylococcus hominis, Leuconostoc spp., Corynebacterium spp., Escherichia coli, Klebsiella pneumoniae, Stenotrophomonas maltophilia and Candida tropicalis.

By univariate analysis, underlying condition [odds ratio (OR): 6.22; \(P = 0.078 \)], insertion in the femoral vein (OR: 2.36; \(P = 0.099 \)), TPN support (OR: 2.25; \(P = 0.089 \)), haemodialysis (OR: 2.43; \(P = 0.068 \)) and duration of catheter placement (OR: 1.14; \(P < 0.001 \)) were associated with CABSI. By multivariate analysis, only haemodialysis was a dependent factor associated with CABSI (OR: 1.94; 95% confidence interval: 0.99–3.80; \(P = 0.054 \)).

The authors investigated the incidence, risk factors, and microorganisms of CABSI in a medical ICU of a tertiary care hospital in Thailand. The incidence of 10.7 per 1000 catheter-days is higher than that reported in other studies.\(^4\,5\) This might be explained by the fact that most of our patients had severe medical conditions represented by high APACHE II score and had significant underlying conditions. In addition, clinical practice guidelines for central venous catheter insertion had not been fully implemented in our hospital during the study period, as evidenced by the high proportion of insertions in the internal jugular instead of subclavian vein, although the maximum sterile barrier during insertion and aseptic technique during catheter care has been emphasised.

Overall, the micro-organisms isolated from blood and catheters in our patients were consistent with the results from other published studies.\(^6\) We found a roughly equal proportion of Gram-positive cocci and Gram-negative bacilli. Individual microbiological data from each institute are important for empirical antimicrobial therapy guidance.

The duration of catheterisation is a significant risk factor for the development of CABSI by univariate analysis, as found in other studies.\(^6\) Catheter removal as soon as possible is one of the strategies to prevent CABSI. Haemodialysis is the only dependent associated risk factor for CABSI by multivariate analysis. Bacterial contaminants in haemodialysis systems are of concern as potential causes of bloodstream infection.\(^7\) In addition, the high likelihood of blood contamination and breakdown of aseptic technique while accessing the patients’ vascular system make the haemodialysis setting unique.\(^7\)

In conclusion, a high rate of CABSI among medical ICU patients was found in our setting. Reducing CABSI among ICU patients is still a challenge for healthcare providers. More stringent infection control guidelines should be implemented with regard to catheter use and risk factor control to prevent CABSI, especially in patients who need haemodialysis.

Acknowledgements

The authors would like to thank all the attending staff and physicians in the Department of Medicine for taking care of the patients, and the Infection Control Unit and Department of Nursing for surveillance data collection.

Conflict of interest

None declared.

Funding sources

None.

References

S. Kiertiburanakul\(^a\), S. Apiwanich\(^b\), S. Muntaji\(^b\), S. Somsakul\(^b\), K. Malathum\(^b\)

\(^a\)Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Corynebacterium striatum as an emerging pathogen

Madam,

Corynebacterium striatum, previously considered a saprophyte on skin and nasal mucosa, is increasingly recognised as a potential pathogen in both immunocompromised and normal hosts. We studied a cluster of C. striatum isolates from patients in a 110 bed subacute respiratory care centre. Between January 2006 and June 2007, 23 clinical isolates of C. striatum from 17 patients were identified by Gram staining, colonial morphology and the API Coryne system. Another commercial kit, RapID CB Plus, was used when necessary. When results from the API Coryne system and the RapID CB Plus did not concur, the organism was reported as Corynebacterium sp. and was not included in our analysis. Minimum inhibitory concentration for penicillin carried out using E-test and that for erythromycin, levofloxacin and vancomycin was performed using disc diffusion method. We defined C. striatum as a pathogen when Gram staining of the specimen showed abundant organisms with neutrophils and a pure growth in culture, together with clinical and radiological evidence of infection. In nine patients, C. striatum was responsible for community-acquired pneumonia (CAP), empyema, pneumonia or acute bronchitis. With regard to C. striatum bronchitis, patients were required to have two of the following: (i) fever; (ii) increased sputum volume or purulence; (iii) newly developed or worsening hypoxemia. Only half of those patients who received antibiotics active against the bacterium survived the infection.

Five patients either had multiple organisms isolated, or had additional foci of infection. We consider the role of C. striatum in these patients as indeterminate, as any pathogenic role would be impossible to demonstrate. C. striatum was regarded as a contaminant or transient coloniser in three patients as there was no clinical evidence of infection. C. striatum was cultured in a chest wound swab, sputum and pleural fluid in a patient with underlying silicosis, old tuberculosis and chronic obstructive pulmonary disease (COPD). He was hospitalised for a right pneumothoraxx with persistent airleak. The chest drain slpped out twice. Purulent pleural fluid and severe wound pain were noticed after placement of the third chest drain. It is possible that introduction of C. striatum by multiple drain insertions led to a fatal empyema. In patients with C. striatum pneumonia, the lower lobes were uniformly involved suggesting the possibility of silent aspiration.

An outpatient with underlying bronchiectasis that had been antibiotic free for 3 months, presented with community-acquired pneumonia (CAP) of the right lower lobe. C. striatum was isolated from sputum collected on the first day of hospitalisation and in bronchial lavage fluid. This strain was susceptible to penicillin and the patient improved with antibiotic therapy.

Except for the patient with CAP, all patients were severely debilitated with a prolonged hospital stay (median stay was 53 days, with a range of 8 days to more than 2 years). They were exposed to multiple antibiotics or antituberculous treatment. Most patients received ventilatory support (13 out of 16) using non-invasive ventilators (12 patients) and/or invasive mechanical ventilators (five patients). Three bed-bound patients who did not receive ventilatory support required nasal oxygen therapy and nasogastric tube feeding. The presence of multiple medical devices and the exposure to antimicrobials had possibly facilitated colonisation with C. striatum of the upper respiratory tract with subsequent invasive infection.

All C. striatum isolates were resistant to at least one antibiotic. Eleven patients carried C. striatum that were resistant to both penicillin and erythromycin and susceptible to vancomycin only. Levofloxacin susceptibility was performed for isolates from 13 patients and the tests uniformly showed resistance.

Using the API Coryne system for organism identification, a 97.6% concordance with conventional methods was reported. Additional tests for identification were needed in 21.8–55.1% of the isolates. The rate of misidentification has been low at 1.2–3.8%. Thus, isolation of a pure, heavy growth of C. striatum in the absence of other pathogens together with clinical deterioration provided strong evidence for its pathogenic role in our patients. However, we could not ascertain how many of the fatalities could be attributed to C. striatum infection rather than to underlying conditions.

A major limitation of our study was the lack of gene sequencing to document cross-infection. In a study using DNA genotyping, a single C. striatum strain was isolated from surfaces and air-sampled in the direct vicinity of the C. striatum-infected patients and was cultured from hands of hospital personnel. This suggested nosocomial spread of C. striatum by healthcare workers. Outbreaks caused by multidrug-resistant C. striatum have been reported in long-term hospitalised patients, with prolonged exposure to broad spectrum antibiotics, in both COPD patients and in intensive care units.

In conclusion, our analysis showed that C. striatum was responsible for serious hospital-acquired respiratory infection and CAP. C. striatum should not be simply discarded as a contaminant, especially when isolated as pure growth in chronic debilitated patients with multiple medical devices in situ. Stringent infection control measures should be considered to prevent nosocomial spread.

Conflict of interest statement
None declared.

Funding sources
None.

References
7. Otsuka Y, Ohkusui K, Kawamura Y, Baba S, Ezaki T, Kimura S. Emergence of multidrug-resistant Corynebacterium striatum as a nosocomial pathogen in long-term